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1.  INTRODUÇÃO 

 O ensino de lógica desde a juventude pode trazer inúmeros benefícios para o 

indivíduo, tanto na esfera pessoal quanto na acadêmica. Entre as vantagens de 

aprender cedo sobre lógica e lógica computacional está o desenvolvimento de 

habilidades que vão muito além da simples programação. O pensamento crítico, a 

resolução de problemas, o aprimoramento cognitivo e a tomada de decisões 

informadas são competências fundamentais para o sucesso em diversas áreas da 

vida. Além disso, compreender os fundamentos da lógica é essencial para lidar com 

a crescente digitalização do mundo, onde a lógica computacional está presente em 

tecnologias, sistemas e processos que usamos diariamente. 

 Apesar da sua relevância, o ensino e a aprendizagem desses conceitos 

enfrentam diversos obstáculos que precisam ser superados. Entre os principais 

desafios, destacam-se a capacidade de abstração e a compreensão de conceitos 

abstratos, que muitas vezes exigem um raciocínio mais elaborado por parte dos 

alunos. Soma-se a isso a escassez de ferramentas pedagógicas adequadas e 

metodologias eficazes que possam tornar o aprendizado acessível, especialmente 

para iniciantes. Outro ponto crucial é a necessidade de estratégias atrativas e 

envolventes que despertem o interesse dos jovens, especialmente em um mundo 

repleto de estímulos tecnológicos e imediatistas. Sem essas abordagens, o ensino 

de lógica pode parecer desinteressante e distante, o que dificulta a aprendizagem e 

a retenção de conceitos fundamentais. 

Diante desse cenário, este trabalho apresenta o LOG.IK, um jogo interativo e 

lúdico desenvolvido para auxiliar no ensino de conceitos lógicos fundamentais, com 

ênfase na aplicação prática da tabela-verdade. A tabela-verdade é uma ferramenta 

central no ensino da lógica, pois permite a visualização clara de combinações 

lógicas, como os operadores AND, OR e NOT, entre outros. No entanto, sua 

abordagem tradicional, muitas vezes teórica, pode ser desafiadora e pouco 

estimulante para iniciantes. 

O LOG.IK busca tentar preencher essa lacuna por meio de mecânicas de 

gamificação, criando uma experiência dinâmica, intuitiva e divertida para os alunos. 

O jogo transforma o aprendizado em desafios interativos, como o desarmamento de 

bombas virtuais, que exigem o uso da tabela-verdade e de conceitos lógicos para 

serem solucionados. Essa abordagem promove o envolvimento e oferece um 



aprendizado prático, onde os usuários aplicam os conceitos em situações simuladas, 

fortalecendo sua compreensão e habilidade de raciocínio lógico. 

Com essa proposta, o LOG.IK visa não apenas facilitar o aprendizado, mas 

também criar um ambiente que desperte a curiosidade e o interesse dos jogadores. 

Ao transformar conceitos abstratos em experiências tangíveis, o jogo oferece uma 

oportunidade de aprendizado acessível e inclusiva, ajudando iniciantes a superar 

barreiras comuns no ensino de lógica e fomentando o desenvolvimento de 

competências essenciais para o século XXI. 

 

2. TEMA 
Desenvolvimento de um jogo interativo denominado LOG.IK, um jogo 

interativo e lúdico desenvolvido para auxiliar no ensino de conceitos lógicos 

fundamentais, com ênfase na aplicação prática da tabela-verdade.  Por meio de 

desafios interativos que requerem a resolução de problemas lógicos a partir de 

comandos escritos, o LOG.IK busca proporcionar uma experiência prática e lúdica, 

tornando o processo de ensino mais dinâmico, intuitivo e acessível. 

 

3. MOTIVAÇÕES 

A lógica de programação é uma competência essencial no mundo 

contemporâneo, com aplicações que vão desde a Ciência da Computação até a 

resolução de problemas em diversas áreas. Dessa forma, compreender e aplicar 

esses conceitos é fundamental para a formação acadêmica e profissional de 

estudantes. 

Ensinar lógica computacional a jovens tem várias razões importantes. Uma 

delas é o desenvolvimento do pensamento crítico e analítico, que permite abordar 

problemas de forma estruturada e lógica. Outra razão é a habilidade de resolver 

problemas, já que a lógica computacional ajuda a quebrar problemas complexos em 

partes menores e mais gerenciáveis, tornando-os mais fáceis de resolver. 

Além disso, a lógica computacional serve como fundamentação para a 

programação. Ela é a base da programação e, ao compreender seus conceitos, os 

estudantes tornam a aprendizagem de linguagens de programação mais fácil e 

acessível. 

Há também a preparação para carreiras futuras. Em um mundo cada vez 

mais digital, habilidades em lógica computacional são altamente valorizadas em 



diversas áreas. Isso inclui não apenas o setor tecnológico, mas também campos 

como ciência, engenharia, finanças e muitos outros. Por fim, a lógica computacional 

estimula a criatividade e a inovação. Resolver problemas lógicos e criar algoritmos 

promove o pensamento criativo, encorajando os jovens a pensar fora da caixa e 

encontrar soluções únicas para os desafios. 

Para superar os desafios do ensino de lógica, métodos lúdicos e interativos 

têm se mostrado alternativas eficazes. Tais abordagens podem ser uma forma mais 

prática de captar a atenção dos jovens e mantê-los motivados a aprender e 

desenvolver suas habilidades lógicas. Ao integrar elementos de gamificação e 

cenários interativos, o aprendizado se torna mais dinâmico e envolvente. 

Atualmente, uma das formas mais promissoras de tornar o ensino mais lúdico 

é por meio da utilização de jogos. Com base nessa perspectiva, foi desenvolvido um 

software educativo que combina aprendizado e diversão, funcionando como um jogo 

interativo. Inicialmente, o foco está na tabela-verdade, mas a proposta prevê 

futuramente a ampliação para outros cenários, nos quais o usuário deverá resolver 

desafios utilizando uma linguagem descritiva. 

Esse jogo se chama LOG.IK, um trocadilho entre a palavra "lógica" e o 

comando log, utilizado em contextos relacionados à tabela-verdade e à resolução de 

desafios, como o desarmamento de bombas no jogo. O intuito foi oferecer um 

ambiente interativo que permitisse aos usuários compreender e aplicar conceitos 

fundamentais de lógica, utilizando mecânicas de gamificação para estimular o 

envolvimento e facilitar o aprendizado. 
 

4. OBJETIVOS 
  

4.1. OBJETIVO GERAL 
 

Desenvolver um jogo interativo denominado LOG.IK, com o objetivo de 

auxiliar iniciantes na aprendizagem de lógica de programação, utilizando a tabela-

verdade como base para a resolução de desafios. 

 

 

 

 



4.2. OBJETIVOS ESPECÍFICOS 
a) Utilizar a linguagem de programação Python e a biblioteca Pygame 

para o desenvolvimento do jogo, garantindo flexibilidade e eficiência na 

criação da plataforma; 

b) construir uma plataforma interativa que facilite a compreensão dos 

conceitos da tabela-verdade, promovendo o aprendizado de forma 

prática e intuitiva; 

c) criar desafios que atribuam pontuações a cada vitória, oferecendo ao 

jogador um retorno imediato e estimulando o envolvimento durante o 

aprendizado; 

d) incorporar elementos visuais e sonoros atraentes, com o objetivo de 

aumentar o envolvimento e a motivação dos usuários ao longo do 

processo de aprendizado. 

 
5. ESPECIFICAÇÃO DE REQUISITOS 

 

Especificação de Requisitos de Software é uma etapa fundamental no 

desenvolvimento de sistemas, em que são detalhadas as funcionalidades, 

características e restrições do software a ser construído. Esse processo visa 

documentar de forma clara e compreensível tudo o que o sistema deve realizar, 

garantindo que as necessidades dos usuários sejam atendidas e que a equipe de 

desenvolvimento tenha uma base sólida para o trabalho. 

Os requisitos podem ser classificados como funcionais, que descrevem o que 

o sistema deve fazer, e não funcionais, que especificam qualidades como 

desempenho, segurança e usabilidade. Neste capítulo, serão apresentados, 

primeiramente, os métodos utilizados para o levantamento de requisitos, seguidos 

pelos requisitos identificados para o desenvolvimento do LOG.IK, abordando tanto 

as funcionalidades principais do jogo quanto os aspectos técnicos e de interação 

que garantirão sua eficiência e atratividade. 

 
5.1.  MÉTODOS DE ESPECIFICAÇÃO DE REQUISITOS 

A primeira técnica de levantamento de requisitos utilizada foi a prototipagem, 

que consiste em um processo iterativo no qual se cria um modelo preliminar do 

sistema para visualizar e experimentar suas funcionalidades antes do 



desenvolvimento completo. O uso de protótipos permite antecipar a visualização do 

software, proporcionando ao usuário uma ideia clara do que esperar como resultado 

final. Para desenvolver as telas do protótipo do sistema (conforme mostram as 

Figuras 1, 2 e 3) foi utilizada a ferramenta InVision. 

A Figura 1 apresenta a prototipação da tela de login do sistema LOG.IK. 

Nessa tela, o usuário deve inserir seu nome de usuário e senha para acessar o 

sistema. Além disso, se for o primeiro acesso do usuário, ele poderá clicar no 

“Registre-se.” A interface foi projetada com o objetivo de ser intuitiva e amigável, 

garantindo uma experiência de usuário eficiente e segura durante o processo de 

autenticação. 

Figura 1: Tela de login 

 

Fonte: Autoria Própria 

 

A Figura 2 apresenta a prototipação da tela de registro do sistema LOG.IK. 

Nessa tela, o usuário deve preencher um formulário com seu nome de usuário, 

senha e endereço de e-mail. 

 

 

 

 

 

 

 

 



 

Figura 2: Tela de Registro 

 

Fonte: Autoria Própria 

A Figura 3 apresenta a prototipação da tela do jogo no sistema LOG.IK, 

organizada em três quadrantes distintos: 

• Quadrante Esquerdo: dedicado à interface principal do jogo, onde o 

usuário interage diretamente com o ambiente e acompanha o 

progresso. 

• Quadrante Superior Direito: projetado para fornecer dicas e 

orientações sobre as ações necessárias para avançar nas fases, 

ajudando o usuário a compreender melhor as tarefas e desafios. 

• Quadrante Inferior Direito: reservado para a entrada de comandos e 

exibição do histórico das ações realizadas, facilitando o 

acompanhamento das atividades e a execução de novas tarefas. 

 

Essa divisão em quadrantes foi cuidadosamente pensada para otimizar a 

experiência do usuário, proporcionando uma navegação clara, funcional e intuitiva 

dentro do jogo. 
 
 

 

 

 

 



 

 

Figura 3: Tela de Jogo 

Fonte: Autoria Própria 

 

Outra técnica utilizada para o levantamento de requisitos foi a análise de 

sistemas semelhantes. Essa abordagem permitiu identificar funcionalidades, 

interfaces e boas práticas já aplicadas em soluções existentes, servindo como 

referência para o desenvolvimento do LOG.IK. Entre os sistemas analisados, 

destacam-se: 

• Code.org: uma plataforma educacional que ensina conceitos básicos 

de programação e lógica por meio de atividades interativas e jogos. 

• Lightbot: um jogo que utiliza desafios para ensinar lógica de 

programação, incentivando o raciocínio computacional. 

• Scratch: uma ferramenta desenvolvida pelo MIT que permite criar 

histórias, jogos e animações, introduzindo conceitos de lógica de forma 

visual e intuitiva. 

• Tynker: um sistema que oferece jogos e atividades para aprender 

programação, com desafios que incorporam lógica e resolução de 

problemas. 

 

 



5.2.  REQUISITOS FUNCIONAIS 

 

Os requisitos funcionais descrevem as funcionalidades e os comportamentos 

necessários para que um sistema atenda às expectativas das partes interessadas. 

De acordo com Sommerville (2015), esses requisitos abrangem os serviços que o 

sistema deve fornecer, especificando como ele deve processar determinadas 

entradas e responder a situações específicas, detalhando seu comportamento em 

cenários particulares.  Os requisitos funcionais do sistema estão listados no 

Quadro 1. 

Quadro 1 – Requisitos Funcionais 

REF Caso de Uso Descrição 

REF 01 Criar conta O sistema deve permitir que os usuários criem 
sua conta a partir de login e senha 

REF 02 Fazer login O sistema deve permitir que o usuário faça login 
a partir de login e senha previamente 
cadastrado 

REF 03 Recuperar 
progresso 

O sistema deve carregar automaticamente o 
progresso do usuário após o login 

REF 04 Iniciar novo jogo O sistema deve permitir  que o usuário inicie um 
novo jogo 

REF 05 Jogar fase O sistema deverá permitir que o usuário interaja 
com o cenário a partir de uma área da tela 
exclusiva para input de texto onde os comandos 
serão executados 

REF 06 Instruir ações O sistema deve oferecer ao usuário instruções 
para interação com os elementos do cenário. 

RE 07 Dar feedback O sistema deve dar feedback em forma de texto 
sobre ações realizadas 

REF 08 Passar de fase Uma vez que os requisitos para concluir o 
desafio sejam atingidos o jogador poderá 
concluir a fase 

Fonte: Autoria Própria 



 
 

5.3. REQUISITOS NÃO FUNCIONAIS 

 

Os requisitos não funcionais são especificações que detalham os critérios 

operacionais de um sistema, diferenciando-se das suas funcionalidades específicas. 

Eles descrevem o comportamento esperado do sistema e as restrições a serem 

atendidas, com foco em atributos de qualidade como desempenho, usabilidade, 

confiabilidade e segurança. Segundo Sommerville (2015), os requisitos não 

funcionais podem ser ainda mais críticos que os funcionais; se não forem atendidos, 

podem tornar o sistema inutilizável. 

O Quadro 2 apresenta os requisitos não funcionais do sistema 

Quadro 2 – Requisitos não funcionais 
 

RNF Classificação Descrição 

RNF01 

 

Desempenho O sistema deve ser capaz de processar 
comandos de linguagem natural e realizar 
ações correspondentes em tempo real, com um 
tempo de resposta inferior a 100ms. 

RNF02 Desempenho O sistema deve ser capaz de carregar e salvar 
o estado do jogo no banco de dados em menos 
de 1 segundo 

RNF03 Usabilidade A interface de usuário deve ser intuitiva e fácil 
de usar, permitindo que jogadores de todas as 
idades e níveis de habilidade possam jogar. 

RNF04 Usabilidade O sistema deve fornecer mensagens de erro 
claras e úteis quando comandos não 
reconhecidos são inseridos. 

RNF05 

 

Segurança Os dados dos usuários e do jogo devem ser 
armazenados de forma segura e protegidos 
contra acesso não autorizado. 

RNF06 Segurança O sistema deve garantir que os dados do jogo 
não sejam corrompidos ou perdidos durante o 
salvamento e carregamento do estado do jogo. 

RNF07 Desenvolvimento O jogo deve ser compatível com as versões 



mais recentes do Python e Pygame. 

RNF08 Desenvolvimento O jogo deve ser compatível com o SGBD 
MySQL 

RNF09 

 

Manutenibilidade O código do sistema deve ser bem 
documentado e organizado, seguindo as 
melhores práticas de programação para facilitar 
a manutenção e a expansão futura. 

RNF10 Manutenibilidade O sistema deve ser modular, permitindo que 
novos recursos e melhorias sejam adicionados 
sem afetar negativamente as funcionalidades 
existentes. 

Fonte: Autoria Própria 

 
 
6. MODELAGEM 

 
6.1. MODELO DE CASOS DE USO 

 

De acordo com Sommerville (2015), os modelos de casos de uso são uma 

ferramenta essencial para capturar e especificar os requisitos funcionais de um 

sistema, proporcionando uma visão clara das interações entre os atores e o sistema. 

Dessa forma, o modelo de casos de uso do sistema a ser desenvolvido, que 

explicita as principais ações e seus atores, é apresentado na Figura 4. 

 

 

 

 

 

 

 

 

 

 

 



 

Figura 4. Modelo de Caso de Uso 

 

Fonte: Autoria Própria 

 

6.2. MODELAGEM CONCEITUAL DO BANCO DE DADOS 

 

De acordo com Sommerville (2015), a modelagem conceitual é essencial para 

garantir que os requisitos de dados sejam compreendidos e documentados de forma 

clara e precisa antes da implementação do banco de dados. O modelo conceitual de 

banco de dados, que explicita as entidades e seus relacionamentos no sistema a ser 

desenvolvido, está representado na Figura 5. 

Figura 5: Modelo conceitual do banco de dados 

 

Fonte: Autoria Própria 

 

 

 



 
6.3. MODELAGEM LÓGICA DO BANCO DE DADOS 

 

A modelagem lógica, segundo Sommerville (2015), é o processo de traduzir 

os requisitos e o modelo conceitual de um sistema para representações mais 

detalhadas, geralmente destinadas à implementação. Esse tipo de modelagem 

busca capturar como os dados serão organizados em um banco de dados, usando 

conceitos como tabelas, chaves primárias, e relações entre tabelas, enquanto ainda 

é independente de um banco de dados específico. Esse nível é essencial para 

assegurar que o projeto atenda aos requisitos de dados do sistema antes da 

implementação técnica. Está representado na Figura 6. 

Figura 6: Modelo lógico do banco de dados 

 

Fonte: Autoria Própria 

 
7. TECNOLOGIAS UTILIZADAS 
 

O desenvolvimento do sistema LOG.IK foi realizado com base em tecnologias 

amplamente reconhecidas por sua eficiência, versatilidade e simplicidade, tanto no 

desenvolvimento de jogos quanto na criação de interfaces e no gerenciamento de 

dados. Este capítulo apresenta as principais tecnologias empregadas no projeto, 

destacando suas características e contribuições para a implementação do sistema. 

 



• Python: é uma linguagem de programação de alto nível e propósito 

geral, criada por Guido van Rossum em 1991. Ela se destaca pela 

facilidade de aprendizado e por sua sintaxe clara e legível, o que a 

torna uma escolha popular entre iniciantes e desenvolvedores 

experientes. Sua versatilidade permite o desenvolvimento de 

aplicações em diversas áreas, incluindo jogos, análise de dados e 

inteligência artificial. 

• Pygame: é uma biblioteca desenvolvida em Python para a criação de 

jogos e aplicativos multimídia. Focada em simplicidade e eficiência, ela 

é construída sobre a biblioteca SDL (Simple DirectMedia Layer), o que 

facilita o uso de gráficos, sons e controles em jogos 2D. Sua estrutura 

oferece recursos fundamentais para o desenvolvimento de jogos 

interativos, tornando-a ideal para projetos educacionais como o 

LOG.IK. 

• QTDesign: é um framework que possibilita o desenvolvimento de 

interfaces gráficas de usuário (GUIs) utilizando Python e o toolkit Qt, 

uma biblioteca amplamente usada para criar aplicações visuais 

multiplataforma. Desenvolvido pela Riverbank Computing, PyQt 

combina a flexibilidade e a simplicidade do Python com o poder do Qt, 

permitindo criar interfaces robustas e intuitivas, adequadas para 

sistemas complexos. 

• Tkinter: é a biblioteca padrão do Python para a criação de interfaces 

gráficas de usuário (GUIs). Ela oferece ferramentas simples e rápidas 

para o desenvolvimento de aplicativos visuais, utilizando widgets pré-

configurados, como botões, caixas de texto, menus e rótulos. Sua 

integração nativa com Python a torna uma escolha prática para 

projetos que exigem interfaces gráficas básicas. 

• MySQL: é um sistema de gerenciamento de banco de dados relacional 

(SGBDR) de código aberto, amplamente utilizado para armazenar e 

gerenciar dados de forma estruturada. Inicialmente desenvolvido por 

Michael "Monty" Widenius e atualmente mantido pela Oracle 

Corporation, o MySQL é uma das tecnologias de banco de dados mais 

populares, reconhecida por sua confiabilidade, desempenho e ampla 

adoção em aplicações web e sistemas corporativos. 



 

 
8. DESCRIÇÃO DO SISTEMA 

Este capítulo apresenta uma visão detalhada do sistema LOG.IK, explicando 

sua estrutura, funcionalidades e o fluxo de interação com o usuário. O objetivo é 

descrever como o sistema foi projetado para alcançar seus propósitos educacionais, 

focando na aprendizagem de lógica de programação por meio de um ambiente 

interativo e lúdico. Serão abordados os principais componentes do sistema, as telas 

desenvolvidas, os cenários de uso e a dinâmica de funcionamento, destacando 

como cada elemento contribui para a experiência do usuário e para o cumprimento 

dos objetivos do projeto. 

 

8.1 Tela de login 
 Ao abrir o sistema, o usuário será direcionado para a tela de login (Figura 7). 

Nessa tela, além de poder inserir suas credenciais para acessar o sistema, também 

há a opção de criar uma nova conta, caso o usuário ainda não esteja cadastrado. 

Figura 7: Tela de login 

 

 
 
 
 
 
 
 
 
 
 

Fonte: Autoria própria 

 
8.2 Tela de registro 

Ao clicar na opção Cadastrar, o usuário será redirecionado para a página de 

registro (Figura 8). Nessa página, será necessário informar um nome de usuário, 

criar uma senha e confirmá-la repetindo no campo correspondente. 



 

 

Figura 8: Tela de registro 

 

 
 
 
 
 
 
 
 
 
 

Fonte: Autoria própria 

 
8.3 Tela de instruções 
 Após fazer o login, o usuário será direcionado para uma tela introdutória que 

apresenta a fase em que está jogando (Figura 9). Nessa tela, serão exibidas 

informações detalhadas sobre o contexto do desafio e as condições necessárias 

para vencer. 

Figura 9: Tela de instrução 

 

 
 
 
 
 
 
 
 
 
 

Fonte: Autoria própria 



 
8.4  Tela dos Desafios 

 Na tela de desafio do jogo (Figura 10), o usuário encontrará três áreas 

principais: 

• Área Principal (à esquerda): exibe a imagem da bomba e seu estado 

atual, permitindo ao jogador acompanhar visualmente o progresso do 

desafio. Além disso, apresenta um placar com o número de vitórias, 

derrotas e a pontuação total acumulada, proporcionando retorno 

imediato sobre o desempenho do jogador. 

• Área de Comandos (canto superior direito): apresenta uma lista dos 

comandos possíveis reconhecidos pelo sistema, além de exibir o último 

comando inserido pelo jogador. Essa seção serve como guia para 

auxiliar na interação com o sistema. 

• Área de Ação (canto inferior direito): é onde o jogador digita os 

comandos necessários para interagir com o sistema e resolver o 

desafio. 

Essa divisão foi projetada para organizar as informações de forma clara e 

funcional, facilitando a navegação e garantindo uma experiência intuitiva para o 

usuário durante o jogo. 

 
Figura 10: Tela de jogo 

 

 

 
 
 
 
 
 
 
 

Fonte: Autoria própria 

 

 



8.5 Aviso de passagem de fase 

 Quando o jogador inserir o comando desarmar, a fase será concluída, e o 

sistema exibirá uma mensagem (Figura 11) indicando sucesso ou falha, de acordo 

com o desempenho do jogador. Caso o desafio seja completado com sucesso, o 

contador de Vitórias será incrementado no banco de dados. Por outro lado, se o 

jogador falhar, o contador de Derrotas será atualizado. A pontuação total é calculada 

pela subtração entre o número de vitórias e derrotas, refletindo o desempenho 

acumulado do jogador ao longo do jogo. 

Figura 11: Aviso de sucesso ou falha 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fonte: Autoria própria 
 

8.6 Alerta de comando inválido 

Caso o jogador insira um comando que não esteja na lista de comandos 

possíveis, o sistema exibirá automaticamente uma mensagem de erro (Figura 12). 

Essa mensagem alertará o jogador sobre o comando inválido, orientando-o a utilizar 

apenas os comandos reconhecidos pelo sistema. 

 

 

 

 

 



Figura 12: Aviso de comando inválido 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autoria própria 

 

8.7 Aviso de fim de jogo 
 Quando o jogador vencer todos os desafios propostos uma mensagem de 

conclusão aparecerá na tela e o jogo retornará à primeira fase (Figura 13). 
Figura 13: Aviso de conclusão de jogo 

 
 
 
 
 
 
 
 
 
 

 

Fonte: Autoria própria 
 
 
 



9. CONSIDERAÇÕES FINAIS 
Durante o ano de 2024, foi desenvolvido o jogo LOG.IK, com o objetivo de 

oferecer uma maneira lúdica de visualizar conceitos práticos de lógica de 

computação. Embora o sistema, em seu estado atual, ainda possua muitos pontos a 

serem aprimorados — como a ampliação do escopo e o aprofundamento dos tópicos 

abordados — ele cumpre a função para a qual foi projetado e se mostra funcional. 

No entanto, não foi possível adicionar uma variedade maior de exemplos e 

desafios, que tornariam o aprendizado mais abrangente e dinâmico. Esse ponto 

representa oportunidade para melhoria futura no sistema, garantindo uma 

experiência ainda mais completa para os usuários. 

A escolha de desenvolver um sistema utilizando uma biblioteca com a qual o 

autor nunca havia tido contato se revelou um grande desafio. No entanto, o processo 

de aprendizado adquirido ao longo do desenvolvimento foi extremamente 

enriquecedor e contribuiu significativamente para o  crescimento profissional do 

autor, fazendo com que todos os esforços valessem a pena. 

  



 
10. REFERÊNCIAS 
SOMMERVILLE, Ian. Engenharia de Software. 10ª Edição. Pearson, 2015  



 
APÊNDICE I - Instruções SQL para Criação da Base de Dados 
-- phpMyAdmin SQL Dump 
-- version 5.2.1 
-- https://www.phpmyadmin.net/ 
-- 
-- Host: 127.0.0.1 
-- Tempo de geração: 25/11/2024 às 18:05 
-- Versão do servidor: 10.4.32-MariaDB 
-- Versão do PHP: 8.2.12 
 
SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO"; 
START TRANSACTION; 
SET time_zone = "+00:00"; 
 

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */; 
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */; 
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */; 
/*!40101 SET NAMES utf8mb4 */; 
 
-- 
-- Banco de dados: `sistema` 
-- 
 
-- -------------------------------------------------------- 
 
-- 
-- Estrutura para tabela `fases` 
-- 
 
CREATE TABLE `fases` ( 
  `id` int(11) NOT NULL, 
  `nome` varchar(255) NOT NULL, 
  `tipo_bomba` varchar(255) NOT NULL 
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci; 
 
-- 
-- Despejando dados para a tabela `fases` 
-- 
 
INSERT INTO `fases` (`id`, `nome`, `tipo_bomba`) VALUES 
(0, 'Fase 1', 'AND'), 
(1, 'Fase 2', 'OR'), 
(2, 'Fase 3', 'IF/ELSE'), 



(3, 'Fase 4', 'IF AND ONLY IF'), 
(4, 'Fase 5', 'NOT'); 
 
-- -------------------------------------------------------- 
 
-- 
-- Estrutura para tabela `usuarios` 
-- 
 
CREATE TABLE `usuarios` ( 
  `id` int(11) NOT NULL, 
  `pass` varchar(255) NOT NULL, 
  `user` varchar(255) NOT NULL, 
  `vitorias` int(11) NOT NULL DEFAULT 0, 
  `derrotas` int(11) NOT NULL DEFAULT 0, 
  `pontos` int(11) GENERATED ALWAYS AS (`vitorias` - `derrotas`) STORED, 
  `fase_atual` int(11) DEFAULT NULL, 
  `ultimo_comando` varchar(255) DEFAULT NULL 
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci; 
 
-- 
-- Despejando dados para a tabela `usuarios` 
-- 
 
INSERT INTO `usuarios` (`id`, `pass`, `user`, `vitorias`, `derrotas`, `fase_atual`, `ultimo_comando`) 
VALUES 
(1, '1', 'a', 9, 1, 1, NULL); 
 
-- 
-- Índices para tabelas despejadas 
-- 
 
-- 
-- Índices de tabela `fases` 
-- 
ALTER TABLE `fases` 
  ADD PRIMARY KEY (`id`), 
  ADD UNIQUE KEY `unique_nome` (`nome`); 
 
-- 
-- Índices de tabela `usuarios` 
-- 
ALTER TABLE `usuarios` 
  ADD PRIMARY KEY (`id`), 
  ADD KEY `fk_fase_atual` (`fase_atual`); 



 
-- 
-- AUTO_INCREMENT para tabelas despejadas 
-- 
 
-- 
-- AUTO_INCREMENT de tabela `fases` 
-- 
ALTER TABLE `fases` 
  MODIFY `id` int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=219; 
 
-- 
-- AUTO_INCREMENT de tabela `usuarios` 
-- 
ALTER TABLE `usuarios` 
  MODIFY `id` int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=2; 
 
-- 
-- Restrições para tabelas despejadas 
-- 
 
-- 
-- Restrições para tabelas `usuarios` 
-- 
ALTER TABLE `usuarios` 
  ADD CONSTRAINT `fk_fase_atual` FOREIGN KEY (`fase_atual`) REFERENCES `fases` (`id`) ON DELETE 
SET NULL; 
COMMIT; 
 
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */; 
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */; 
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */; 
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