
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

SUL-RIO-GRANDENSE – CÂMPUS PELOTAS - VISCONDE DA GRAÇA
CURSO TÉCNICO EM DESENVOLVIMENTO DE SISTEMAS

LOG.IK – FACILITANDO A APRENDIZAGEM DE CONCEITOS DE LÓGICA DE

PROGRAMAÇÃO PARA INICIANTES

Emerson Brahm da Silva

Pelotas, 2024.

Emerson Brahm da Silva

LOG.IK: Facilitando a aprendizagem de conceitos de lógica de programação
para iniciantes

Trabalho de Conclusão de Curso apresentado
como requisito na disciplina de Metodologia da
Pesquisa II do curso Técnico em Desenvolvimento
de Sistemas, do Instituto Federal Sul-rio-grandense
– Campus Pelotas - Visconde da Graça.

Orientadora: Profa. Dra. Maria Isabel Giusti Moreira

Pelotas, 2024.

SUMÁRIO

1. INTRODUÇÃO ... 4
2. TEMA ... 5
3. MOTIVAÇÕES ... 5
4. OBJETIVOS ... 6

4.1. OBJETIVO GERAL .. 6
4.2. OBJETIVOS ESPECÍFICOS .. 7

5. ESPECIFICAÇÃO DE REQUISITOS ... 7
5.1. MÉTODOS DE ESPECIFICAÇÃO DE REQUISITOS 7
5.2. REQUISITOS FUNCIONAIS ... 11
5.3. REQUISITOS NÃO FUNCIONAIS .. 12

6. MODELAGEM ... 13
6.1. MODELO DE CASOS DE USO .. 13
6.2. MODELAGEM CONCEITUAL DO BANCO DE DADOS 14
6.3. MODELAGEM LÓGICA DO BANCO DE DADOS 15

7. TECNOLOGIAS UTILIZADAS ... 15
8. DESCRIÇÃO DO SISTEMA .. 17

8.1 Tela de login ... 17
8.2 Tela de registro .. 17
8.3 Tela de instruções .. 18
8.4 Tela dos Desafios .. 19
8.5 Aviso de passagem de fase .. 20
8.6 Alerta de comando inválido .. 20
8.7 Aviso de fim de jogo .. 21

9. CONSIDERAÇÕES FINAIS ... 22
10. REFERÊNCIAS .. 23
APÊNDICE I - Instruções SQL para Criação da Base de Dados 24

1. INTRODUÇÃO

 O ensino de lógica desde a juventude pode trazer inúmeros benefícios para o

indivíduo, tanto na esfera pessoal quanto na acadêmica. Entre as vantagens de

aprender cedo sobre lógica e lógica computacional está o desenvolvimento de

habilidades que vão muito além da simples programação. O pensamento crítico, a

resolução de problemas, o aprimoramento cognitivo e a tomada de decisões

informadas são competências fundamentais para o sucesso em diversas áreas da

vida. Além disso, compreender os fundamentos da lógica é essencial para lidar com

a crescente digitalização do mundo, onde a lógica computacional está presente em

tecnologias, sistemas e processos que usamos diariamente.

 Apesar da sua relevância, o ensino e a aprendizagem desses conceitos

enfrentam diversos obstáculos que precisam ser superados. Entre os principais

desafios, destacam-se a capacidade de abstração e a compreensão de conceitos

abstratos, que muitas vezes exigem um raciocínio mais elaborado por parte dos

alunos. Soma-se a isso a escassez de ferramentas pedagógicas adequadas e

metodologias eficazes que possam tornar o aprendizado acessível, especialmente

para iniciantes. Outro ponto crucial é a necessidade de estratégias atrativas e

envolventes que despertem o interesse dos jovens, especialmente em um mundo

repleto de estímulos tecnológicos e imediatistas. Sem essas abordagens, o ensino

de lógica pode parecer desinteressante e distante, o que dificulta a aprendizagem e

a retenção de conceitos fundamentais.

Diante desse cenário, este trabalho apresenta o LOG.IK, um jogo interativo e

lúdico desenvolvido para auxiliar no ensino de conceitos lógicos fundamentais, com

ênfase na aplicação prática da tabela-verdade. A tabela-verdade é uma ferramenta

central no ensino da lógica, pois permite a visualização clara de combinações

lógicas, como os operadores AND, OR e NOT, entre outros. No entanto, sua

abordagem tradicional, muitas vezes teórica, pode ser desafiadora e pouco

estimulante para iniciantes.

O LOG.IK busca tentar preencher essa lacuna por meio de mecânicas de

gamificação, criando uma experiência dinâmica, intuitiva e divertida para os alunos.

O jogo transforma o aprendizado em desafios interativos, como o desarmamento de

bombas virtuais, que exigem o uso da tabela-verdade e de conceitos lógicos para

serem solucionados. Essa abordagem promove o envolvimento e oferece um

aprendizado prático, onde os usuários aplicam os conceitos em situações simuladas,

fortalecendo sua compreensão e habilidade de raciocínio lógico.

Com essa proposta, o LOG.IK visa não apenas facilitar o aprendizado, mas

também criar um ambiente que desperte a curiosidade e o interesse dos jogadores.

Ao transformar conceitos abstratos em experiências tangíveis, o jogo oferece uma

oportunidade de aprendizado acessível e inclusiva, ajudando iniciantes a superar

barreiras comuns no ensino de lógica e fomentando o desenvolvimento de

competências essenciais para o século XXI.

2. TEMA
Desenvolvimento de um jogo interativo denominado LOG.IK, um jogo

interativo e lúdico desenvolvido para auxiliar no ensino de conceitos lógicos

fundamentais, com ênfase na aplicação prática da tabela-verdade. Por meio de

desafios interativos que requerem a resolução de problemas lógicos a partir de

comandos escritos, o LOG.IK busca proporcionar uma experiência prática e lúdica,

tornando o processo de ensino mais dinâmico, intuitivo e acessível.

3. MOTIVAÇÕES

A lógica de programação é uma competência essencial no mundo

contemporâneo, com aplicações que vão desde a Ciência da Computação até a

resolução de problemas em diversas áreas. Dessa forma, compreender e aplicar

esses conceitos é fundamental para a formação acadêmica e profissional de

estudantes.

Ensinar lógica computacional a jovens tem várias razões importantes. Uma

delas é o desenvolvimento do pensamento crítico e analítico, que permite abordar

problemas de forma estruturada e lógica. Outra razão é a habilidade de resolver

problemas, já que a lógica computacional ajuda a quebrar problemas complexos em

partes menores e mais gerenciáveis, tornando-os mais fáceis de resolver.

Além disso, a lógica computacional serve como fundamentação para a

programação. Ela é a base da programação e, ao compreender seus conceitos, os

estudantes tornam a aprendizagem de linguagens de programação mais fácil e

acessível.

Há também a preparação para carreiras futuras. Em um mundo cada vez

mais digital, habilidades em lógica computacional são altamente valorizadas em

diversas áreas. Isso inclui não apenas o setor tecnológico, mas também campos

como ciência, engenharia, finanças e muitos outros. Por fim, a lógica computacional

estimula a criatividade e a inovação. Resolver problemas lógicos e criar algoritmos

promove o pensamento criativo, encorajando os jovens a pensar fora da caixa e

encontrar soluções únicas para os desafios.

Para superar os desafios do ensino de lógica, métodos lúdicos e interativos

têm se mostrado alternativas eficazes. Tais abordagens podem ser uma forma mais

prática de captar a atenção dos jovens e mantê-los motivados a aprender e

desenvolver suas habilidades lógicas. Ao integrar elementos de gamificação e

cenários interativos, o aprendizado se torna mais dinâmico e envolvente.

Atualmente, uma das formas mais promissoras de tornar o ensino mais lúdico

é por meio da utilização de jogos. Com base nessa perspectiva, foi desenvolvido um

software educativo que combina aprendizado e diversão, funcionando como um jogo

interativo. Inicialmente, o foco está na tabela-verdade, mas a proposta prevê

futuramente a ampliação para outros cenários, nos quais o usuário deverá resolver

desafios utilizando uma linguagem descritiva.

Esse jogo se chama LOG.IK, um trocadilho entre a palavra "lógica" e o

comando log, utilizado em contextos relacionados à tabela-verdade e à resolução de

desafios, como o desarmamento de bombas no jogo. O intuito foi oferecer um

ambiente interativo que permitisse aos usuários compreender e aplicar conceitos

fundamentais de lógica, utilizando mecânicas de gamificação para estimular o

envolvimento e facilitar o aprendizado.

4. OBJETIVOS

4.1. OBJETIVO GERAL

Desenvolver um jogo interativo denominado LOG.IK, com o objetivo de

auxiliar iniciantes na aprendizagem de lógica de programação, utilizando a tabela-

verdade como base para a resolução de desafios.

4.2. OBJETIVOS ESPECÍFICOS
a) Utilizar a linguagem de programação Python e a biblioteca Pygame

para o desenvolvimento do jogo, garantindo flexibilidade e eficiência na

criação da plataforma;

b) construir uma plataforma interativa que facilite a compreensão dos

conceitos da tabela-verdade, promovendo o aprendizado de forma

prática e intuitiva;

c) criar desafios que atribuam pontuações a cada vitória, oferecendo ao

jogador um retorno imediato e estimulando o envolvimento durante o

aprendizado;

d) incorporar elementos visuais e sonoros atraentes, com o objetivo de

aumentar o envolvimento e a motivação dos usuários ao longo do

processo de aprendizado.

5. ESPECIFICAÇÃO DE REQUISITOS

Especificação de Requisitos de Software é uma etapa fundamental no

desenvolvimento de sistemas, em que são detalhadas as funcionalidades,

características e restrições do software a ser construído. Esse processo visa

documentar de forma clara e compreensível tudo o que o sistema deve realizar,

garantindo que as necessidades dos usuários sejam atendidas e que a equipe de

desenvolvimento tenha uma base sólida para o trabalho.

Os requisitos podem ser classificados como funcionais, que descrevem o que

o sistema deve fazer, e não funcionais, que especificam qualidades como

desempenho, segurança e usabilidade. Neste capítulo, serão apresentados,

primeiramente, os métodos utilizados para o levantamento de requisitos, seguidos

pelos requisitos identificados para o desenvolvimento do LOG.IK, abordando tanto

as funcionalidades principais do jogo quanto os aspectos técnicos e de interação

que garantirão sua eficiência e atratividade.

5.1. MÉTODOS DE ESPECIFICAÇÃO DE REQUISITOS

A primeira técnica de levantamento de requisitos utilizada foi a prototipagem,

que consiste em um processo iterativo no qual se cria um modelo preliminar do

sistema para visualizar e experimentar suas funcionalidades antes do

desenvolvimento completo. O uso de protótipos permite antecipar a visualização do

software, proporcionando ao usuário uma ideia clara do que esperar como resultado

final. Para desenvolver as telas do protótipo do sistema (conforme mostram as

Figuras 1, 2 e 3) foi utilizada a ferramenta InVision.

A Figura 1 apresenta a prototipação da tela de login do sistema LOG.IK.

Nessa tela, o usuário deve inserir seu nome de usuário e senha para acessar o

sistema. Além disso, se for o primeiro acesso do usuário, ele poderá clicar no

“Registre-se.” A interface foi projetada com o objetivo de ser intuitiva e amigável,

garantindo uma experiência de usuário eficiente e segura durante o processo de

autenticação.

Figura 1: Tela de login

Fonte: Autoria Própria

A Figura 2 apresenta a prototipação da tela de registro do sistema LOG.IK.

Nessa tela, o usuário deve preencher um formulário com seu nome de usuário,

senha e endereço de e-mail.

Figura 2: Tela de Registro

Fonte: Autoria Própria

A Figura 3 apresenta a prototipação da tela do jogo no sistema LOG.IK,

organizada em três quadrantes distintos:

• Quadrante Esquerdo: dedicado à interface principal do jogo, onde o

usuário interage diretamente com o ambiente e acompanha o

progresso.

• Quadrante Superior Direito: projetado para fornecer dicas e

orientações sobre as ações necessárias para avançar nas fases,

ajudando o usuário a compreender melhor as tarefas e desafios.

• Quadrante Inferior Direito: reservado para a entrada de comandos e

exibição do histórico das ações realizadas, facilitando o

acompanhamento das atividades e a execução de novas tarefas.

Essa divisão em quadrantes foi cuidadosamente pensada para otimizar a

experiência do usuário, proporcionando uma navegação clara, funcional e intuitiva

dentro do jogo.

Figura 3: Tela de Jogo

Fonte: Autoria Própria

Outra técnica utilizada para o levantamento de requisitos foi a análise de

sistemas semelhantes. Essa abordagem permitiu identificar funcionalidades,

interfaces e boas práticas já aplicadas em soluções existentes, servindo como

referência para o desenvolvimento do LOG.IK. Entre os sistemas analisados,

destacam-se:

• Code.org: uma plataforma educacional que ensina conceitos básicos

de programação e lógica por meio de atividades interativas e jogos.

• Lightbot: um jogo que utiliza desafios para ensinar lógica de

programação, incentivando o raciocínio computacional.

• Scratch: uma ferramenta desenvolvida pelo MIT que permite criar

histórias, jogos e animações, introduzindo conceitos de lógica de forma

visual e intuitiva.

• Tynker: um sistema que oferece jogos e atividades para aprender

programação, com desafios que incorporam lógica e resolução de

problemas.

5.2. REQUISITOS FUNCIONAIS

Os requisitos funcionais descrevem as funcionalidades e os comportamentos

necessários para que um sistema atenda às expectativas das partes interessadas.

De acordo com Sommerville (2015), esses requisitos abrangem os serviços que o

sistema deve fornecer, especificando como ele deve processar determinadas

entradas e responder a situações específicas, detalhando seu comportamento em

cenários particulares. Os requisitos funcionais do sistema estão listados no

Quadro 1.

Quadro 1 – Requisitos Funcionais

REF Caso de Uso Descrição

REF 01 Criar conta O sistema deve permitir que os usuários criem
sua conta a partir de login e senha

REF 02 Fazer login O sistema deve permitir que o usuário faça login
a partir de login e senha previamente
cadastrado

REF 03 Recuperar
progresso

O sistema deve carregar automaticamente o
progresso do usuário após o login

REF 04 Iniciar novo jogo O sistema deve permitir que o usuário inicie um
novo jogo

REF 05 Jogar fase O sistema deverá permitir que o usuário interaja
com o cenário a partir de uma área da tela
exclusiva para input de texto onde os comandos
serão executados

REF 06 Instruir ações O sistema deve oferecer ao usuário instruções
para interação com os elementos do cenário.

RE 07 Dar feedback O sistema deve dar feedback em forma de texto
sobre ações realizadas

REF 08 Passar de fase Uma vez que os requisitos para concluir o
desafio sejam atingidos o jogador poderá
concluir a fase

Fonte: Autoria Própria

5.3. REQUISITOS NÃO FUNCIONAIS

Os requisitos não funcionais são especificações que detalham os critérios

operacionais de um sistema, diferenciando-se das suas funcionalidades específicas.

Eles descrevem o comportamento esperado do sistema e as restrições a serem

atendidas, com foco em atributos de qualidade como desempenho, usabilidade,

confiabilidade e segurança. Segundo Sommerville (2015), os requisitos não

funcionais podem ser ainda mais críticos que os funcionais; se não forem atendidos,

podem tornar o sistema inutilizável.

O Quadro 2 apresenta os requisitos não funcionais do sistema

Quadro 2 – Requisitos não funcionais

RNF Classificação Descrição

RNF01

Desempenho O sistema deve ser capaz de processar
comandos de linguagem natural e realizar
ações correspondentes em tempo real, com um
tempo de resposta inferior a 100ms.

RNF02 Desempenho O sistema deve ser capaz de carregar e salvar
o estado do jogo no banco de dados em menos
de 1 segundo

RNF03 Usabilidade A interface de usuário deve ser intuitiva e fácil
de usar, permitindo que jogadores de todas as
idades e níveis de habilidade possam jogar.

RNF04 Usabilidade O sistema deve fornecer mensagens de erro
claras e úteis quando comandos não
reconhecidos são inseridos.

RNF05

Segurança Os dados dos usuários e do jogo devem ser
armazenados de forma segura e protegidos
contra acesso não autorizado.

RNF06 Segurança O sistema deve garantir que os dados do jogo
não sejam corrompidos ou perdidos durante o
salvamento e carregamento do estado do jogo.

RNF07 Desenvolvimento O jogo deve ser compatível com as versões

mais recentes do Python e Pygame.

RNF08 Desenvolvimento O jogo deve ser compatível com o SGBD
MySQL

RNF09

Manutenibilidade O código do sistema deve ser bem
documentado e organizado, seguindo as
melhores práticas de programação para facilitar
a manutenção e a expansão futura.

RNF10 Manutenibilidade O sistema deve ser modular, permitindo que
novos recursos e melhorias sejam adicionados
sem afetar negativamente as funcionalidades
existentes.

Fonte: Autoria Própria

6. MODELAGEM

6.1. MODELO DE CASOS DE USO

De acordo com Sommerville (2015), os modelos de casos de uso são uma

ferramenta essencial para capturar e especificar os requisitos funcionais de um

sistema, proporcionando uma visão clara das interações entre os atores e o sistema.

Dessa forma, o modelo de casos de uso do sistema a ser desenvolvido, que

explicita as principais ações e seus atores, é apresentado na Figura 4.

Figura 4. Modelo de Caso de Uso

Fonte: Autoria Própria

6.2. MODELAGEM CONCEITUAL DO BANCO DE DADOS

De acordo com Sommerville (2015), a modelagem conceitual é essencial para

garantir que os requisitos de dados sejam compreendidos e documentados de forma

clara e precisa antes da implementação do banco de dados. O modelo conceitual de

banco de dados, que explicita as entidades e seus relacionamentos no sistema a ser

desenvolvido, está representado na Figura 5.

Figura 5: Modelo conceitual do banco de dados

Fonte: Autoria Própria

6.3. MODELAGEM LÓGICA DO BANCO DE DADOS

A modelagem lógica, segundo Sommerville (2015), é o processo de traduzir

os requisitos e o modelo conceitual de um sistema para representações mais

detalhadas, geralmente destinadas à implementação. Esse tipo de modelagem

busca capturar como os dados serão organizados em um banco de dados, usando

conceitos como tabelas, chaves primárias, e relações entre tabelas, enquanto ainda

é independente de um banco de dados específico. Esse nível é essencial para

assegurar que o projeto atenda aos requisitos de dados do sistema antes da

implementação técnica. Está representado na Figura 6.

Figura 6: Modelo lógico do banco de dados

Fonte: Autoria Própria

7. TECNOLOGIAS UTILIZADAS

O desenvolvimento do sistema LOG.IK foi realizado com base em tecnologias

amplamente reconhecidas por sua eficiência, versatilidade e simplicidade, tanto no

desenvolvimento de jogos quanto na criação de interfaces e no gerenciamento de

dados. Este capítulo apresenta as principais tecnologias empregadas no projeto,

destacando suas características e contribuições para a implementação do sistema.

• Python: é uma linguagem de programação de alto nível e propósito

geral, criada por Guido van Rossum em 1991. Ela se destaca pela

facilidade de aprendizado e por sua sintaxe clara e legível, o que a

torna uma escolha popular entre iniciantes e desenvolvedores

experientes. Sua versatilidade permite o desenvolvimento de

aplicações em diversas áreas, incluindo jogos, análise de dados e

inteligência artificial.

• Pygame: é uma biblioteca desenvolvida em Python para a criação de

jogos e aplicativos multimídia. Focada em simplicidade e eficiência, ela

é construída sobre a biblioteca SDL (Simple DirectMedia Layer), o que

facilita o uso de gráficos, sons e controles em jogos 2D. Sua estrutura

oferece recursos fundamentais para o desenvolvimento de jogos

interativos, tornando-a ideal para projetos educacionais como o

LOG.IK.

• QTDesign: é um framework que possibilita o desenvolvimento de

interfaces gráficas de usuário (GUIs) utilizando Python e o toolkit Qt,

uma biblioteca amplamente usada para criar aplicações visuais

multiplataforma. Desenvolvido pela Riverbank Computing, PyQt

combina a flexibilidade e a simplicidade do Python com o poder do Qt,

permitindo criar interfaces robustas e intuitivas, adequadas para

sistemas complexos.

• Tkinter: é a biblioteca padrão do Python para a criação de interfaces

gráficas de usuário (GUIs). Ela oferece ferramentas simples e rápidas

para o desenvolvimento de aplicativos visuais, utilizando widgets pré-

configurados, como botões, caixas de texto, menus e rótulos. Sua

integração nativa com Python a torna uma escolha prática para

projetos que exigem interfaces gráficas básicas.

• MySQL: é um sistema de gerenciamento de banco de dados relacional

(SGBDR) de código aberto, amplamente utilizado para armazenar e

gerenciar dados de forma estruturada. Inicialmente desenvolvido por

Michael "Monty" Widenius e atualmente mantido pela Oracle

Corporation, o MySQL é uma das tecnologias de banco de dados mais

populares, reconhecida por sua confiabilidade, desempenho e ampla

adoção em aplicações web e sistemas corporativos.

8. DESCRIÇÃO DO SISTEMA

Este capítulo apresenta uma visão detalhada do sistema LOG.IK, explicando

sua estrutura, funcionalidades e o fluxo de interação com o usuário. O objetivo é

descrever como o sistema foi projetado para alcançar seus propósitos educacionais,

focando na aprendizagem de lógica de programação por meio de um ambiente

interativo e lúdico. Serão abordados os principais componentes do sistema, as telas

desenvolvidas, os cenários de uso e a dinâmica de funcionamento, destacando

como cada elemento contribui para a experiência do usuário e para o cumprimento

dos objetivos do projeto.

8.1 Tela de login
 Ao abrir o sistema, o usuário será direcionado para a tela de login (Figura 7).

Nessa tela, além de poder inserir suas credenciais para acessar o sistema, também

há a opção de criar uma nova conta, caso o usuário ainda não esteja cadastrado.

Figura 7: Tela de login

Fonte: Autoria própria

8.2 Tela de registro

Ao clicar na opção Cadastrar, o usuário será redirecionado para a página de

registro (Figura 8). Nessa página, será necessário informar um nome de usuário,

criar uma senha e confirmá-la repetindo no campo correspondente.

Figura 8: Tela de registro

Fonte: Autoria própria

8.3 Tela de instruções
 Após fazer o login, o usuário será direcionado para uma tela introdutória que

apresenta a fase em que está jogando (Figura 9). Nessa tela, serão exibidas

informações detalhadas sobre o contexto do desafio e as condições necessárias

para vencer.

Figura 9: Tela de instrução

Fonte: Autoria própria

8.4 Tela dos Desafios

 Na tela de desafio do jogo (Figura 10), o usuário encontrará três áreas

principais:

• Área Principal (à esquerda): exibe a imagem da bomba e seu estado

atual, permitindo ao jogador acompanhar visualmente o progresso do

desafio. Além disso, apresenta um placar com o número de vitórias,

derrotas e a pontuação total acumulada, proporcionando retorno

imediato sobre o desempenho do jogador.

• Área de Comandos (canto superior direito): apresenta uma lista dos

comandos possíveis reconhecidos pelo sistema, além de exibir o último

comando inserido pelo jogador. Essa seção serve como guia para

auxiliar na interação com o sistema.

• Área de Ação (canto inferior direito): é onde o jogador digita os

comandos necessários para interagir com o sistema e resolver o

desafio.

Essa divisão foi projetada para organizar as informações de forma clara e

funcional, facilitando a navegação e garantindo uma experiência intuitiva para o

usuário durante o jogo.

Figura 10: Tela de jogo

Fonte: Autoria própria

8.5 Aviso de passagem de fase

 Quando o jogador inserir o comando desarmar, a fase será concluída, e o

sistema exibirá uma mensagem (Figura 11) indicando sucesso ou falha, de acordo

com o desempenho do jogador. Caso o desafio seja completado com sucesso, o

contador de Vitórias será incrementado no banco de dados. Por outro lado, se o

jogador falhar, o contador de Derrotas será atualizado. A pontuação total é calculada

pela subtração entre o número de vitórias e derrotas, refletindo o desempenho

acumulado do jogador ao longo do jogo.

Figura 11: Aviso de sucesso ou falha

Fonte: Autoria própria

8.6 Alerta de comando inválido

Caso o jogador insira um comando que não esteja na lista de comandos

possíveis, o sistema exibirá automaticamente uma mensagem de erro (Figura 12).

Essa mensagem alertará o jogador sobre o comando inválido, orientando-o a utilizar

apenas os comandos reconhecidos pelo sistema.

Figura 12: Aviso de comando inválido

Fonte: Autoria própria

8.7 Aviso de fim de jogo
 Quando o jogador vencer todos os desafios propostos uma mensagem de

conclusão aparecerá na tela e o jogo retornará à primeira fase (Figura 13).
Figura 13: Aviso de conclusão de jogo

Fonte: Autoria própria

9. CONSIDERAÇÕES FINAIS
Durante o ano de 2024, foi desenvolvido o jogo LOG.IK, com o objetivo de

oferecer uma maneira lúdica de visualizar conceitos práticos de lógica de

computação. Embora o sistema, em seu estado atual, ainda possua muitos pontos a

serem aprimorados — como a ampliação do escopo e o aprofundamento dos tópicos

abordados — ele cumpre a função para a qual foi projetado e se mostra funcional.

No entanto, não foi possível adicionar uma variedade maior de exemplos e

desafios, que tornariam o aprendizado mais abrangente e dinâmico. Esse ponto

representa oportunidade para melhoria futura no sistema, garantindo uma

experiência ainda mais completa para os usuários.

A escolha de desenvolver um sistema utilizando uma biblioteca com a qual o

autor nunca havia tido contato se revelou um grande desafio. No entanto, o processo

de aprendizado adquirido ao longo do desenvolvimento foi extremamente

enriquecedor e contribuiu significativamente para o crescimento profissional do

autor, fazendo com que todos os esforços valessem a pena.

10. REFERÊNCIAS
SOMMERVILLE, Ian. Engenharia de Software. 10ª Edição. Pearson, 2015

APÊNDICE I - Instruções SQL para Criação da Base de Dados
-- phpMyAdmin SQL Dump
-- version 5.2.1
-- https://www.phpmyadmin.net/
--
-- Host: 127.0.0.1
-- Tempo de geração: 25/11/2024 às 18:05
-- Versão do servidor: 10.4.32-MariaDB
-- Versão do PHP: 8.2.12

SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
START TRANSACTION;
SET time_zone = "+00:00";

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;

--
-- Banco de dados: `sistema`
--

-- --

--
-- Estrutura para tabela `fases`
--

CREATE TABLE `fases` (
 `id` int(11) NOT NULL,
 `nome` varchar(255) NOT NULL,
 `tipo_bomba` varchar(255) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

--
-- Despejando dados para a tabela `fases`
--

INSERT INTO `fases` (`id`, `nome`, `tipo_bomba`) VALUES
(0, 'Fase 1', 'AND'),
(1, 'Fase 2', 'OR'),
(2, 'Fase 3', 'IF/ELSE'),

(3, 'Fase 4', 'IF AND ONLY IF'),
(4, 'Fase 5', 'NOT');

-- --

--
-- Estrutura para tabela `usuarios`
--

CREATE TABLE `usuarios` (
 `id` int(11) NOT NULL,
 `pass` varchar(255) NOT NULL,
 `user` varchar(255) NOT NULL,
 `vitorias` int(11) NOT NULL DEFAULT 0,
 `derrotas` int(11) NOT NULL DEFAULT 0,
 `pontos` int(11) GENERATED ALWAYS AS (`vitorias` - `derrotas`) STORED,
 `fase_atual` int(11) DEFAULT NULL,
 `ultimo_comando` varchar(255) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

--
-- Despejando dados para a tabela `usuarios`
--

INSERT INTO `usuarios` (`id`, `pass`, `user`, `vitorias`, `derrotas`, `fase_atual`, `ultimo_comando`)
VALUES
(1, '1', 'a', 9, 1, 1, NULL);

--
-- Índices para tabelas despejadas
--

--
-- Índices de tabela `fases`
--
ALTER TABLE `fases`
 ADD PRIMARY KEY (`id`),
 ADD UNIQUE KEY `unique_nome` (`nome`);

--
-- Índices de tabela `usuarios`
--
ALTER TABLE `usuarios`
 ADD PRIMARY KEY (`id`),
 ADD KEY `fk_fase_atual` (`fase_atual`);

--
-- AUTO_INCREMENT para tabelas despejadas
--

--
-- AUTO_INCREMENT de tabela `fases`
--
ALTER TABLE `fases`
 MODIFY `id` int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=219;

--
-- AUTO_INCREMENT de tabela `usuarios`
--
ALTER TABLE `usuarios`
 MODIFY `id` int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=2;

--
-- Restrições para tabelas despejadas
--

--
-- Restrições para tabelas `usuarios`
--
ALTER TABLE `usuarios`
 ADD CONSTRAINT `fk_fase_atual` FOREIGN KEY (`fase_atual`) REFERENCES `fases` (`id`) ON DELETE
SET NULL;
COMMIT;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

	1. INTRODUÇÃO
	2. TEMA
	3. MOTIVAÇÕES
	4. OBJETIVOS
	4.1. OBJETIVO GERAL
	4.2. OBJETIVOS ESPECÍFICOS

	5. ESPECIFICAÇÃO DE REQUISITOS
	5.1. MÉTODOS DE ESPECIFICAÇÃO DE REQUISITOS
	5.2. REQUISITOS FUNCIONAIS
	5.3. REQUISITOS NÃO FUNCIONAIS

	6. MODELAGEM
	6.1. MODELO DE CASOS DE USO
	6.2. MODELAGEM CONCEITUAL DO BANCO DE DADOS
	6.3. MODELAGEM LÓGICA DO BANCO DE DADOS

	7. TECNOLOGIAS UTILIZADAS
	8. DESCRIÇÃO DO SISTEMA
	8.1 Tela de login
	8.2 Tela de registro
	8.3 Tela de instruções
	8.4 Tela dos Desafios
	8.5 Aviso de passagem de fase
	8.6 Alerta de comando inválido
	8.7 Aviso de fim de jogo

	9. CONSIDERAÇÕES FINAIS
	10. REFERÊNCIAS
	APÊNDICE I - Instruções SQL para Criação da Base de Dados

